### Dating - Importance of zircon in uranium-lead dating | negeriku.info

Uranium–lead dating, abbreviated U–Pb dating, is one of the oldest and most refined of the radiometric dating schemes. It can be used to date rocks that formed and crystallised from about 1 million The dating method is usually performed on the mineral zircon. The mineral incorporates uranium and thorium atoms into its. Originally formed by crystallization from a magma or in metamorphic rocks, zircons are so durable and resistant to chemical attack that they rarely go away. U-Pb zircon dating of metamorphic rocks in the region .. Concordia diagrams and mean Pb/U ages for zircons of samples AvQ, AvQ and AvQ- .

First, its crystal structure allows a small amount of tetravalent uranium to substitute for zirconium but excludes with great efficiency the incorporation of lead. It might be said that one begins with an empty box. Second, zircon, once formed, is highly resistant to change and has the highest blocking temperature ever observed.

Finally, with few predictable exceptions, zircon grows or regrows only in liquid rock or in solid rock reheated to approach its melting point.

## Uranium–lead dating

Combining all of these attributes, it is often possible to measure both the time of crystallization and the time of second melting in different parts of the same grain or in different selected grains from the same rock. Of course, such a high blocking temperature can have its disadvantages.

Inherited cores may give a mixed false age when the age of crystallization is sought. For this reason, three or more grain types or parts of a grain are analyzed to establish that material of only one age is present.

### Uranium–lead dating - Wikipedia

Experience with the results of the uranium—lead method for zircons has demonstrated an interesting paradox. If left at low surface temperatures for a geologically long time, the radioactivity within the crystal can destroy the crystal lattice structure, whereas at higher temperatures this process is self-annealing.

In fact, when examined by X-ray methods, some zircons have no detectable structure, indicating that at least 25 percent of the initial atoms have been displaced by radiation damage. Under these conditions a low-temperature event insufficient to even reset the potassium—argon system see below Potassium—argon methods in biotite can cause lead to be lost in some grains.

It is no coincidence that, when criteria were finally found to locate concordant grains, these grains were also found to be those with the lowest uranium content and the lowest related radiation damage.

Given the two related uranium—lead parent—daughter systems, it is possible to determine both the time of the initial, or primary, rock-forming event and the time of a major reheating, or secondary, event.

The uranium—lead isotopes in the mineral titanite CaTiSiO5 from a series of rocks that have a common geologic history can be plotted on a concordia diagram. Isotopic systems that have been exploited for radiometric dating have half-lives ranging from only about 10 years e.

It is not affected by external factors such as temperaturepressurechemical environment, or presence of a magnetic or electric field. For all other nuclides, the proportion of the original nuclide to its decay products changes in a predictable way as the original nuclide decays over time. This predictability allows the relative abundances of related nuclides to be used as a clock to measure the time from the incorporation of the original nuclides into a material to the present.

## Radiometric dating

Accuracy of radiometric dating[ edit ] Thermal ionization mass spectrometer used in radiometric dating. The basic equation of radiometric dating requires that neither the parent nuclide nor the daughter product can enter or leave the material after its formation. The possible confounding effects of contamination of parent and daughter isotopes have to be considered, as do the effects of any loss or gain of such isotopes since the sample was created.

It is therefore essential to have as much information as possible about the material being dated and to check for possible signs of alteration. Alternatively, if several different minerals can be dated from the same sample and are assumed to be formed by the same event and were in equilibrium with the reservoir when they formed, they should form an isochron.

This can reduce the problem of contamination. In uranium—lead datingthe concordia diagram is used which also decreases the problem of nuclide loss.

**negeriku.info #18 - Absolute radiometric age dating of rocks and geologic materials**

Finally, correlation between different isotopic dating methods may be required to confirm the age of a sample. For example, the age of the Amitsoq gneisses from western Greenland was determined to be 3. The procedures used to isolate and analyze the parent and daughter nuclides must be precise and accurate.

This normally involves isotope-ratio mass spectrometry. For instance, carbon has a half-life of 5, years. After an organism has been dead for 60, years, so little carbon is left that accurate dating cannot be established.

On the other hand, the concentration of carbon falls off so steeply that the age of relatively young remains can be determined precisely to within a few decades. Closure temperature If a material that selectively rejects the daughter nuclide is heated, any daughter nuclides that have been accumulated over time will be lost through diffusionsetting the isotopic "clock" to zero.

The temperature at which this happens is known as the closure temperature or blocking temperature and is specific to a particular material and isotopic system. These temperatures are experimentally determined in the lab by artificially resetting sample minerals using a high-temperature furnace. As the mineral cools, the crystal structure begins to form and diffusion of isotopes is less easy. At a certain temperature, the crystal structure has formed sufficiently to prevent diffusion of isotopes.

This temperature is what is known as closure temperature and represents the temperature below which the mineral is a closed system to isotopes. Thus an igneous or metamorphic rock or melt, which is slowly cooling, does not begin to exhibit measurable radioactive decay until it cools below the closure temperature.

The age that can be calculated by radiometric dating is thus the time at which the rock or mineral cooled to closure temperature. This field is known as thermochronology or thermochronometry. The age is calculated from the slope of the isochron line and the original composition from the intercept of the isochron with the y-axis.

The equation is most conveniently expressed in terms of the measured quantity N t rather than the constant initial value No. The above equation makes use of information on the composition of parent and daughter isotopes at the time the material being tested cooled below its closure temperature.

This is well-established for most isotopic systems. Plotting an isochron is used to solve the age equation graphically and calculate the age of the sample and the original composition. Modern dating methods[ edit ] Radiometric dating has been carried out since when it was invented by Ernest Rutherford as a method by which one might determine the age of the Earth.

In the century since then the techniques have been greatly improved and expanded. The mass spectrometer was invented in the s and began to be used in radiometric dating in the s.

It operates by generating a beam of ionized atoms from the sample under test. The ions then travel through a magnetic field, which diverts them into different sampling sensors, known as " Faraday cups ", depending on their mass and level of ionization.

On impact in the cups, the ions set up a very weak current that can be measured to determine the rate of impacts and the relative concentrations of different atoms in the beams. Uranium—lead dating method[ edit ] Main article: Uranium—lead dating A concordia diagram as used in uranium—lead datingwith data from the Pfunze BeltZimbabwe. This scheme has been refined to the point that the error margin in dates of rocks can be as low as less than two million years in two-and-a-half billion years.

Zircon has a very high closure temperature, is resistant to mechanical weathering and is very chemically inert. Zircon also forms multiple crystal layers during metamorphic events, which each may record an isotopic age of the event.

This can be seen in the concordia diagram, where the samples plot along an errorchron straight line which intersects the concordia curve at the age of the sample.

Samarium—neodymium dating method[ edit ] Main article: Samarium—neodymium dating This involves the alpha decay of Sm to Nd with a half-life of 1.

Accuracy levels of within twenty million years in ages of two-and-a-half billion years are achievable. Potassium—argon dating This involves electron capture or positron decay of potassium to argon Potassium has a half-life of 1. Rubidium—strontium dating method[ edit ] Main article: Rubidium—strontium dating This is based on the beta decay of rubidium to strontiumwith a half-life of 50 billion years.

This scheme is used to date old igneous and metamorphic rocksand has also been used to date lunar samples. Closure temperatures are so high that they are not a concern. Rubidium-strontium dating is not as precise as the uranium-lead method, with errors of 30 to 50 million years for a 3-billion-year-old sample.